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Abstract. The dynamic and scattering properties of the Sierpinski gasket are studied in 
systems up to as large as N = 2391 486 atoms (level = 13). using the spectral moments 
method. Two models. with scalar and vectorial forces, are developed. The efiectsof disorder 
are also investigated. The densityoistates on thescalar perfect Sierpinski gasket is found to 
be in agreement with previous results. For the vectorial perfect model. we find that the 
density of states exhibits self-similar properties. For the disordered systems. results show 
that the density of states exhibits two regimes. For the disordered vectorial model, the 
densityofstatesisproportional tow in thelow-frrquencyregime. Across-owerisfound,and 
on short length scales the density of states is proportional to w“. Determination of the 
correlation functions shows that, although the density ofslates follows the Debye law. the 
low-frequency region doesnot correspond to an acoustic regime, which isin agreement with 
the lack of translational invariance. A microscopic theory of the scattering of light by 
fractals is developed and comparisons with recent results obtained in Raman scattering 
measurementsofsilica aerogels are reported.ne resultsconfirm that. in the fracton regime, 
the Raman intensity behaves with a power law. with the value of the exponent depending 
on the scaling properties and the susceptibility derivatives. 

1. Introduction 

Self-similar lattices have been the subject of much attention. It has been claimed that 
the structure of fractals may bridge the gap between crystals or quasi-crystals and 
disordered materials. From a structural point of view they may serve as simple models 
for disordered systems such as porous media, polymers, epoxy resins or gels. The most 
widely studied systems include the Sierpinski gaskets and percolation networks. The 
density of states on a fractal was studied for the first time by Alexander and Orbach 
(1982). who took the scaling properties of the mass and the connectivity into account. 
They found that elastic properties are described by phonons for long wavelengths A S E 
where E is some ‘correlation length’, and by localized vibrational states, called fractons, 
for h 4 6. More specifically, their studies dealt with the ZD Sierpinski gasket and per- 
colation networks. For the Sierpinskigasket they found that the density ofstates behaves 
as ud-’ with the fracton dimensionality 

= 2D/(2 f 8) (1) 
where D is the fractal dimensionality, and 8 is the exponent giving the dependence of 
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the diffusion constant on distance-or the connectivity. For the Sierpinski gasket 
f3 = 0.322 and D = In 3/ln 2 = 1.585, giving2 = 1.365. 

For the percolation clusters, they suggested that the DOS (real quantum density 
of states for electrons; density of one-phonon states for vibrations) in all Euclidean 
dimensions d ( d  2) obeys the universal law 

g(w) - 0i-l (2) 
with d = 4/3. 

For fractals they associated a length scale L = L(w)  with the vibrations. If we 
consider a very large fractal, the degrees of freedom will be dN where N is the number 
of atoms. Now we disconnect this fractal into M identical blobs with size L .  Then K ~ M  
frequencies of the modes of the large fractal will fall to zero (K takes into account the 
rotational degrees of freedom; K = 3/2 for the :D Sierpinski gasket). Let w ( L )  be the 
lowest non-zero frequency of a blob (and of the large disconnected fractal). The total 
number of degrees of freedom being constant, the number of missing low-frequency 
modes is equal to the total number of translational and rotational modes: 

wheren(L) isthenumbel ofdegreesoffreedomofa blob.Takingintoaccount the form 
(2) of g ( w ) ,  and the scaling of the mass n ( L )  - LD ( n ( L )  = LD for a large ?D Sierpinski 
gasket: see equations (1 1) and (20)), one obtains 

L ” w ( L ) ~  = const. (4) 
If the system is weakly connected, the density of states and the lower frequencies of 

blobs are not changed when the blobs are connected. From the relation (4) it is possible 
to define a localization length for a given low frequency of the large fractal. One obtains 

Now if we consider a dense packing of fractals with size L (= E ) ,  a cross-over will 
occur for the frequency 

For length scales less than L ,  the solutions exhibit a fractal behaviour, while for 
larger length scales, the solutions are uniform and an acoustic regime may appear. Let 
us note that for the percolation clusters the relation (4) is an approximation (Yakubo et 
a1 1990). 

Simulations have been performed by several groups to verify the 4/3 conjecture and 
the scalingform of the density of states. 

Concerning the percolation networks, which are fractals on smaller length scales 
than the percolation length E c ,  simulations have been performed by Derrida er al(l984) 
using an effective-medium approximation (EMA) treatment. They found 2 = 1 but they 
pointed out that their method does not perform well for determination of the critical 
exponents. Yakubo and Nakayama (1987, 1989), with a scalar model and using the 
resonance method of Williams and hlaris (1985) on a large network, found a value for 
2 that was very close to 4/3 near pc for the 2D (700’) lattice (Yakubo and Nakayama 
1987) and 3D (703) lattice (Yakubo and Nakayama 1989). Webman and Grest (1985), 
who studied different models for diffusion limited aggregate (DLA) clusters (64’lattice), 
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found that the behaviour of the DOS largely depends on the type of forces. In another 
paper (GrestandWebman 1984) theyusedan 18”cubiclatticeandfoundadimensionality 
value close to 4/3. Feng and Sen (1984) studied a triangular percolating network with 
central and non-central forces. They did not determine the DOS of these systems but also 
found that the critical exponents depend on the type of forces. Feng (1985) noted that 
the elasticity of a tenuous material should be dominated by stretching at small scales and 
by bending at larger ones, producing an additional cross-over. Visualizations of fractons 
have been presented by Courtens et a1 (1989). 

Studying the perfect and the disordered Sierpinski carpet, Bourbonnais ef a1 (1989) 
obtained a fracton dimensionality equal to 1.6, very different from 4/3. Numerical 
studies were performed on samples of 4096 atoms on a parallel experimental computer. 

Concerning Sierpinski gaskets, the first results on energy levels of a tight-binding 
Hamiltonian with a magnetic field have been discussed by Rammal and Toulouse (1982). 
Using a decimation process, Domany eta/ (1983), Alexander (1983a, b) and Alexander 
and Haveli (1983) obtained the density of states of the Sierpinski gasket and of several 
other self-similar structures. The energy levels were discrete, very closely spaced, highly 
degenerate and exhibited self-similarity. Using renormalization of the equations of 
motion, Rammal and Toulouse (1983) and Rammal(l984) investigated the density of 
states of d-dimensional Sierpinski gaskets. They showed that for d > 1 the spectral 
measure is a superposition of two distinct pure point measures of relative weights 
d/(d + 1) and l/(d + 1). The first type concerns localized states while the second con- 
cerns hierarchical states, localized around the holes of the gasket. The density of states 
has also been investigated by Tremblay and Southern (1983) using direct-space renor- 
malization techniques. Their results are in agreement with previous studies. 

Concerninglocalization of the modes Grest and Webman (1984) found that, whereas 
all states in the Debye regime are extended, a considerable fraction of the states in the 
fracton regime also seem to be extended. Southern and Douchant (1985), studying 
fractal lattices, found evidence for the existence of extended and localized states at high 
frequencies. 

It has also been suggested that the fractons are superlocalized (Levy and Souillard 
1987, Brook Harris and Aharony 1987). This means that they decay faster than expo- 
nentially with distance, namely as 

V r )  - exP(-[4x@)lil (7) 
where E(w) is the localization length and ri = 1 for the classical Anderson localization. 

In numerical studies in a ZD percolation network, De Vries er a1 (1989), using a ZOO2 
lattice, determined that the superlocalization component cannot be larger than B = 1.1, 
while Yakubo and Nakayama (1989) found a value of ri = 2.3, which is not consistent 
with any theoretical predictions. Bourbonnais et ai (1989) found no evidence to support 
the conjecture of superlocalization. 

Existence of a steepness in the cross-over region of the density of states in percolating 
clusters has been discussed at length by several authors, such as Derrida er ai (1984), 
Yakubo and Nakayama (1987) and Grest and Webman (1984), with contradictory 
results. Identifying the maximum frequency of the lowest acoustic branch with the cross- 
over frequency w,, Southern and Douchant (1985) found no sharp structure and a 
smooth cross-over between a phonon and fracton regime in the DOS. 

On the other hand, recent experimental investigations, i.e. small-angle neutron 
scattering (SANS) (Vacher et d 1987, Schaeffer and Keefer 1986) and small-angle x-ray 
scattering (saxs) (Dos Santos eta1 1987), demonstrated that silica aerogels are excellent 
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examplesofporoussolids having afractal structure at length scales L larger than particle 
size a (~30-50 A for a material with a density 0.015 g cmF3, D = 1.8) and smaller than 
correlation length 5 (= 500-1000 A for the same material). In such materials three 
vibration regimes can be expected: 

(i) waves of wavelength A > 5 (w < w,) are weakly localized acousticphonons; 
(ii) with increased frequency, a new regime occurs beyond the first cross-over fre- 

(iii) as the frequency is further increased, a second cross-over is reached at wco2 and 

Below a and above 5 ,  the material is homogeneous (Vacher eral1987). 
Experimental investigations of light scattering from silica aerogels by Courtens er al 

(1987.1988), Tsujimi eta1 (1988), Pelous eral (1990) and Vacher eta1 (1990) constitute 
avery detailed test of the scaling considerations of the fracton model. Investigations of 
the vibrational dynamics of these materials have shown evidence of a cross-over from 
long-wavelength acoustic phonons to fractons in the Brillouin scattering frequency 
range. Scattering from fractons was observed in the very low-frequency Raman region. 
The authors show that in a large frequency range the intensity of the scattered light 
follows a power law 

quency weat. the new excitations being called fractons; and 

the vibration spectrum is dominated by bulk and surface modes. 

I (w) /n(w)  - w - w  (8) 
with 01 0.36410.39forthesamplesstudied, wheren(w)istheBose-Einsteinfactor.The 
scattering of light from aerogels has been discussed by Alexander (1989) using scaling 
arguments. He found a power law for the scattering by fractons but concluded that 01 

cannot be easily related to the spectral dimension but rather to the exponent U that 
characterizes the scaling form for the strains. Some numerical studies of Raman scat- 
tering from fractals have been performed by Montagna er al(l990) on square (65 x 65) 
and cubic (29 X 29 x 29) site percolation lattices using diagonalization of the dynamical 
matrix. 

It is clear that the dynamics and scattering properties of fractals are still an open 
question and it would be interesting to investigate very large systems with a method that 
takes into account the exact structure of the system and the exact values of eigenmodes. 

Recently, we found that the spectral moments method could provide the exact 
response function of very large harmonic systems, whatever the structure, the type of 
the forces and the dimension (Benoit 1987, 1989, Benoit and Poussigue 1989). This 
method has been used for the study of the dynamicsof quasi-crystals (Benoit era1 1990) 
and polythiophcne (Poussigue and Benoit 1990, Poussigue et all991). More recently we 
have shown that, with some variations, this method could provide the DOS with good 
accuracy and the displacement correlation functions of the system. 

The method consists of determining the moments of the response functions directly 
from the dynamical matrix: for instance the dielectric susceptibility of the system if we 
are studying infrared absorption, or the differential cross section if we are studying 
inelasticscattering of light or neutrons by the vibrations. Then, using Stieltjes inversion 
formula. it is possible to compute the response function from the moments. The method 
is simple and exact. To determine the moments of the response functions, we assume 
that thc coupling between the perturbing field and the sample is applied through local 
atomic coefficients: ionic charges for infrared absorption, local susceptibility derivative 
tensors for Raman scattering, Fermi length for inelastic neutron scattering. Further- 
more, it is well known that incoherent neutron scattering could provide the DOS of the 
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Figure 1. The ?D Sierpinski gasket at stage n = 8: the system is built with 9843 atoms; n, 
is the 'centre' of the gasket (from Barnsley et a! 1988). k,. k, are the wavevectors of the 
incident and scattered light respectively. and qd the momentum transfer. 

system. Also it is sufficient in our method to assume that the nuclear Fermi lengths are 
random variables to obtain the DOS to a good approximation. With small size matrix, it 
is necessary to average over several systems. Technical details can be found in Benoit er 
a1 1992). 

In the following we report, for the first time, a computation of the density of states, 
localization of the fractons and the Raman intensity up to the stage n = 12 of perfect and 
disordered scalar and vectorial models of a ZD Sierpinski gasket. We can compute until 
stage n = 13 (size of the gasket = 2391 486 atoms, computing time 20 min on an IBM 
3090-600VF). However, as the results are very close to those obtained with n = 12, we 
restricted our computations to gaskets from stage n = 2 to stage n = 12, to limit the 
computing time. 

To construct the 2D Sierpinski gasket, we begin with a triangle at stage n = 0. The 
stage n + 1 is obtained by juxtaposition of three stage-n structures at the corner (figure 
1). The total number of sites at stage n is given by 

N ,  = 3(1 + 3")/2. (9) 
Weassumenowthatatomsoraggregateswithmassmareplacedat thesitesofthegasket 
and connected by springs. 

In the first model (scalar model), we assume that displacements of the particles are 
represented by a scalar: for instance, motion in a direction orthogonal to the plane of 
the gasket. Then the set of equations of motion for site n is given by 

mu, = -E k,U, with kji  = -2 k ,  (10) 
i j#i 

wherejdenotes a neighbouring site of iand ksare the force constants between the atoms 
i and j .  

Concerning the vibrations, this model does not correspond closely to any known 
physical situation. However, the resolution of the Schrodinger equation for electrons in 
the tight-binding model can be described by the same type of equations. This is the only 
model of the Sierpinski gasket until now. In order to determine the effect of the disorder 
that appears in real materials, we also studied a model with random force constants. 
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In thesecondmodel(vectoria1 model) wesupposethat theatomsinteract withcentral 
forces between first neighbours. If two atoms interact with the potential energy Vnn,(r ) ,  
where ris thedistancebetween them, the forceconstantsaregiven by(BornandHuang 
1956, Maradudin el a[ 1971): 

@,&, n') = [ ( r ~ r ~ / r 2 ) ( ( l / r ) a v " " , / d r  - d2V. . . /6r2)  - a , ( l / r ) sv . . . / 6 r ] ,= ,  II-,.~,. 

(11) 

The potential energy is given by the harmonic approximation: 

where r: is the equilibrium position and ~ . ( n )  the Cartesian a component of the 
displacement of the nth atom. We chose the following form for the potential energy: 

v",,*(r) = &knn.(r - r:,.)2 (13) 

where rin, is the distance between atoms n and n'. With this simple model the first 
derivative in the relation (11) is equal to zero. 

In the perfect models, the force constants and the masses are taken as being equal 
to 1. For the disordered models, the force constants are given as 

k ;  = k &  I' = k . .  ny. ., j > i  (scalar model) (14) 

and 

(15) 
@ $ ( n , n ' )  = 

(/3,n') > (c. n) 
n) = @@(n,17')Yap(n, n') 
(vectorial model) 

where the yii and ym& a ' )  are randomvariablesdistributed according to the continuous 
bounded probability density functions P(yii) and P(yep(n, n')). P(y) is identical to zero 
except in a region 0 < y < 1. We investigated numerically the class for P(y) = 1. It 
should be noted that the disordered vectorial model is now not strictly a central force 
type.The translationalinvarianceofthegasket asa wholewasalwaystakenintoaccount. 

2. Density of states 

Totest the accuracyofthespectral momentsmethod, we firstcompared the resultsof this 
technique for the perfect scalar model and the exact results obtained by the decimation 
process developed by Domany eta1 (1983). In this paper, the authors showed that the 
energy of states of the system at level n can be calculated from those of the system at 
level n - 1 by 

E ,  = [-3 + (9 - 4~,-1)'!']/2 

ws = [5 + (25 - 40;-~)"~]/2 

(16) 

(17) 

or if we work with the square of the frequencies ( E  = o2 - 4) 

in agreement with the result of Rammal andToulouse (1983). 
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Table 1. Comparison between the exact frequencies (left column) obtained by using the 
decimation process and the values obtained by the spectral moments method (right 
column) with random charges on atoms. Gasket at stage n =  12. 180 generalized 
moments. with averages over tu’o systems. 

Decimation method Moments method 

1,381 96 
0.697 22 
0.29364 
0.14356 
0.059 36 
0.02887 
0.011 78 
0.00606 
0.001 18 

1.381 97 
0.697 43 
0.293 76 
0.143 55 
0.05943 
0.028 88 
0.01 I56 
0.005 99 
0.001 19 

Starting from 

w t - ,  = 3  

one obtains the ‘descendent’ values 

(5 + d13) /2 .  . . 
which are called ‘mid-gap states’ by Domany er al, and starting from 

w i - ,  = j  

one obtains the states 

(5 + V‘5)/2. . . 
which form the edges of the gap intervals. 

These exact values are compared with the values obtained by the moments method 
in table 1. We observe that anexcellent agreement isobtained, which isquiteremarkable, 
especially for the low-frequency region. However, for the very low-frequency part of 
the DOS (u/umax < 7), the moments 
method could not resolve the spectrum and provided only an average value. 

The computations were performed from level n = 2 to level n = 12. When the size 
of the matrix was not very large it was necessary to compute an average over several 
systems. For the perfect scalar models the results are reported in figures 2 and 3. The 
oosofthen = 12latticeisreportedin linearscaleinfigure2andisincompleteagreement 
with the exact DOS obtained by the decimation process (Domany et a1 1983) or by 
renormalization methods (Tremblay and Southern 1983). We report the log-logplot of 
the DOS in figure 3 for stages n = 5, 8 and 12. In addition. we can easily see that the 
density of states exhibits some self-similarity. The low-frequency part of the spectrum 
is not as rich in structure as the high-frequency part. Two reasons can be given: for small 
systems, there are few modes in this region, and for large systems, the resolution of the 
moments method does not allow separation of the different peaks. However, we note 
that as n increases the number of modes in the low-frequency part increases strongly 
(figure 3(b)) but without any effect of self-similarity. Only for large n does the low- 
frequency part begin to exhibit some self-similarity (figure 3(c)). 

U = w2)  and with very large systems (n 
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Figure 2. Linear plot of the density of states for [he scalar model of the perfect Sierpinski 
gasket for the n = 12 level. 

With the perfect scalar model, the mode at U = 6 exhausted one-third of the total 
DOS. Thecalculationsreportedinfigure3donotseem toagree with thisresult. However, 
wecalculatedtheintegrateddensityofstateswithalinearplot andfoundtheu = 6mode 
with the right weight. Thus we conclude that, if the log-log typeof plot has the advantage 
of expanding the very low-frequency part of the spectrum and revealing easily whether 
the spectrum obeys to a simple power law, it has the great disadvantage of squeezing the 
curves. 

We report in figure 4 the frequencies of the fracton that is here the mode with the 
lower frequency plotted as a function of the size of the gasket. These frequencies, 
following Alexander and Orbach (1982). must fit equations (2) or (6). I n  the Sierpinski 
gasket the size L is such that 

L = 2"r0 (18) 

where $'is the distance between the atoms. From (2) and (6) one obtains the following 
relation: 

]no:, = -[(2 + 8)in2]tt + c=  -[(2d/d)ln2]n + C (19) 
where C is a constant depending on I"' and 8. 

We note that from n = 2 to n = 6 the points followed a straight line (figure 4). For 
n 2 7 the frequencies were too low for the method. The slope of the line gave 6 = 0.234, 
which is not far from the value of Alexander and Orbach (e = 0.327.). From this value 
we obtain the fracton dimensionality d = 1.418, not very different from the theoretical 
value d = 1.365. The values of the spectral dimensionality obtained from the fracton 
dispersion or from the slope of the DOS in the fracton regime are reported in table 2. 

For the disordered model, the results are reported in figure 5 ,  for one stage ( n  = 12). 
The results are somewhat surprising. For quite large systems we note that the spec- 
trum has a tendency to exhibit two regions: a low-frequency regime where the DOS 
presents some similarity with the DOS of the perfect model, and a high-frequency 
regime where the DOS is proportional to wd-' with a slope equal to 0.49 giving 2 = 
1.49. We investigated numerically a different class of probability density, such that 
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-I - 1  0 1 
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Figure 3. Log-log plot of the density of states for the scalar model of the perfect Sierpinski 
gasket for the (a) n = 5 ,  ( b )  n = 8 and (c)  n = 12 levels. 
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Figure 4. Logarithm of the square of the lowest 
frequencies of the spectral density of the scalar per- 
fect Sierpinski gaskets (*) and logarithm Of the 
square of the averaged lowest frequencies of the 
spectral density of the disordered models ( A )  plot- 
ted as a function of the level n of the gasket from 
n = 2 to n = 6. For n 2 7 if is not Dossible to 

I determine the loweht frequency with t h e  moments 
' ' " method. . .  

Table 2. Values of the fracton dimensionality d obtained with the different models from 
the fracton dispersion (a) and from the slope of the DOS in the fracton regime (b). 

Scalar model Vectorial model 

Ordered Disordered Ordered Disordered 
-- . ,"~,~ . ~ * . .  . _ _  , , ,*, ~~~ ,- 

*.. , ., 
(a) 1.418 1.51 1.238 - 
(b) - 1.49 - 1.48 

-3 

-2 - I  

tOl!(l" i 

Figure 5. Log-log plot of the density of states for the disordered scalar Sierpinski gasket 
for the n = 12 level. 
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Figure 6. Log-log plot of the density of states for the vectorial model of the perfect 
Sierpinski gasket for !he n = 12 level. 

P(y) = 1 for 0.5 C y < 1.5 and we did not find any significant change. As for the 
perfect gasket, we calculated the dispersion of the fraclon frequencies. However, for 
small gaskets the lowest frequency fluctuated. So the value for the lowest frequencies 
was averaged over 60 gaskets for n = 2 and n = 3, 40 gaskets for n = 4, 25 gaskets 
for n = 5 and 14 gaskets for n = 6. The results are reported in figure 4. From n = 2 
to n = 6 the points follow a straight line. The slope of the line gave 0 = 0.10. From 
this value one obtains the fracton dimensionality d = 1.51. We note that the value 
of the fracton dimensionality obtained from the fracton dispersion (2) was in agree- 
ment with the value obtained from the slope of the DOS in the fracton regime. 

For the perfect vectorial model, the results are reported in figure 6 for one stage 
(n  = 12). We observe that, as for the scalar model, for large systems, the density of 
states exhibited some self-similarity. However. there is a large region in the high- 
frequency part of the spectrum that was not self-similar. This effect was also observed 
for the scalar model but for a smaller region of the spectrum. The frequencies of the 
fracton as a function of the size of the gasket are reported in figure 7. The slope of 
the line gave 0 = 0.59. The fracton dimensionality was 2 = 1.223, very different from 
the value obtained with the scalar models. 

In order to study the dynamics of the vectorial model in detail, we used the group 
theory. The method used for the block diagonalization of the dynamical matrix is 
based on a paper of Maiadudin and Vosko (1968). This is done by constructing a 
set of matrices U(R) where R is a symmetry operation of the group of the system. 
Furthermore, combination of these matrices with irreducible representations leads 
to the form of symmetry-adapted functions. One can further simplify the form of the 
dynamical matrix. Irreducible representations are A , ,  AL and E for the C,, group. 

The gasket at stage n presented 3(3n + 1) degrees of freedom. Decomposition of 
the representation given by the motion into irreducible representations gave 

rn = t(3" + I)A, + 1(3" + I)A, + (3" + 1 ) ~ .  (20) 

Block diagonalization was performed only for gaskets up to the n = 6 level in 
order to limit the computing time and the DOS for each symmetry was computed by 
the moments method. 
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Figure 7. Logarithm of the square of the lowest 
frequencies of the spectral density of the vectorial 

\,\ \ perfect Sierpinski gaskets plotted as a function of 
the level n of the gasket. We have reported the 
fracton dispersion for three symmetries: the fre- 
quencies of the E type fractons (A) being the 
lowest, the curve is the same as the one obtained 
with the non-block-diagonalized matrices. Crosses 

The results are reported in figure 8 at level n = 6 for the three symmetries. The 
DOS presented some self-similarity. The frequencies of the fractons as a function of 
the size of the gasket are reported in figure 7. Exactly the same slope was found for 
the three symmetries (fractons A, ,  A2 and E). This result confirms that the values 
of 8 and d depended only on the model and not on the symmetry of the fracton. 

The results for the disordered vectorial lattices are reported in figure 9 for the 
three levels (n = 5,  8 and 12). For quite large systems we note that the spectrum 
exhibits a real ‘phonon regime’ with a slope very close to 1 (e 1.001) for w <.w, 
(w, = O.l), and a ‘fracton regime’ (w > w,) where the DOS is proportional to w d - l  

with a slope equal to 0.48 which gives d = 1.48 (table 2). The cross-over between 
the two regimes is smooth and presents a small hump. These spectra are analogous 
to the spectra obtained for the percolating network with a concentration above p c  
(Yakubo and Nakayama 1987, 1989, Grest and Webman 1984). The frequency w, 
did not change with the size of the gasket. However, from the lack of translational 
invariance the low-frequency regime cannot be a Debye regime. This result will be 
confirmed by the study of the localization of the eigenmodes. We also considered a 
Gaussian distribution for P ( y )  with a strong dispersion for the probability density. 
The results were in complete agreement with previous results. 

Concerning dispersion of the fractons, we could not obtain a clear behaviour of 
the lowest frequencies with the size of the gaskets, even by using a statistical average 
over 100 systems. We believe that such a result is due to a strong localization of the 
modes. We shall return later to this question. In order to clarify the effect of the 
disorder, we determined the position correlation functions of the systems. 

3. Localization 

The time-dependent position correlation function is given by 
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loglglmll 

tog(m 1 
Figure 8. Log-log plot of the density of slates with the (a) A, symmelry, ( b )  AI symmetry 
and ( c )  E symmetry (level n = 6 ) .  

with 

(A) = (1/Z) Tr(e-a"A) (22) 
and H is the Hamiltonian of the system, Z the partition function and u,(n, t )  the 
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Figure 9. Log-log plot of the density of states for the vectorial model of the disordered 
Sierpinski gasket for the ( a )  n = 5, (b)  n = 8 and (c) n = 12 levels. 

Cartesian n component of the displacement of the nth atom in the Heisenberg 
representation. 

The imaginary part of the Fourier transform of G,,(n, n', r )  is given by 
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log( 0 )  

Figure 10. Localization ratio of the modes lor the scalar perleci Sierpinski gasket (stage 
n = 8) plotted (U) as a function of the square of [he frequency and (b )  as a function of 
the logarithm 01 the frequency. 

where wi and e , , ( j )  are the frequency and the amplitude of the mode j .  The physical 
interpretation of this correlation function is simple only in the classical limit (hlar- 
adudin 1969). This function can be understood as being due to the influence of the 
atom n on the atom n'.  If this function vanishes for any frequency this means that 
there is no correlation between the atoms n and n ' ,  The direct computation of 
Gap(n, n' ,  w )  presents some difficulties. It is preferable to work with the following 
function (Benoit 1987): 

with U = w2 and A i  = w ; ,  which is identical to 2 z h [ n ( w )  + l]-'G~p(n,n', w )  for 
w > 0, symmetrical and independent of the temperature. S,p(n. n',  U )  is a particular 
form of the response function and the spectral moments method can be applied. We 
observe that for a given frequency w (or U). the function S,p(n, n', U) is proportional 
to the wavepacket amplitude of the modes centred on w (or U). We used the relation 
(24) to calculate the ratio of the second and fourth moments of the spatial distribution 
of the amplitude. Let us define 
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log 0,) 

Figure 11. Localization ratio of the modes for the scalar disordered Sierpinski gasket 
(stage rz = 8) plotted (a )  as a function of the square of the frequency and (b) as a function 
of the logarithm of the frequency. 

Mere IS,(n, n' ,  U ) \  is the absolute value of function S(n, n ' ,  U )  for the scalar model 
or the square root of the sum of the squares of the diagonal elements of function 
S,&n, n ' ,  U ) .  Then the localization ratio is 

P(U) = P c r ( U V P 2 b ) .  (27) 

This ratio gives the magnitude of the extension for the modes that concern the atom 
n .  Here the atom n was always the atom n, of the 'centre' of the gasket (see figure 
1). In order to limit the computing time we operated with the stage n = 8 gasket and 
the atoms n' were the 80 first neighbours of atom n,. Results are reported in figures 
10-13 in  linear II plot (a) and log(o) plot (6). We observe that for all models the 
high-frequency modes are much more localized than the low-frequency ones. We 
shall now consider the scattering properties of the gasket. 

4. Light scattering 

The diffusion of light is usually obtained with the help of macroscopic Maxwell 
equations where the fields are averaged over a volume A V  that is small but large 
enough, however, to contain very many atoms and molecules (Jackson 1962). Such 
an approach is not possible in fractal systems where the average of physical quantities 
(density is a well known example) is strongly dependent on the value of the volume 
AV. I t  is necessary, therefore, to develop a more microscopic approach where the 
atomic structure is taken into account exactly. 

In the following, we show how, by using the spectral moments method, we can 
calculate the Raman scattering spectra of fractals. Then we apply the method to the 
Sierpinski gasket, This model is certainly not the best for comparison with the 
experimental data. However, it could provide interesting indications on the behaviour 
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loa I I 
Figure 12. Localization ratio of the modes for the vectorial perfect Sierpinski gasket 
(stage n = 8) plotted (a )  as a function of the square of the frequency and ( b )  as a function 
of the logarithm of the frequency. 

o((ho e ”  .* ,”! - 1  IOU I W I  

Figure 13. Localization ratio of the modes for the rectorial disordered Sierpinski gasket 
(stage n = 8) plotted (a) as a function of the square of the frequency and ( b )  as a function 
of the logarithm of the frequency. 

of the scattering spectrum and it provides a good illustration of the technique. We 
have computed the spectra with a disordered vectorial model, which seems to be 
closer to physical situations. In this simple model, we do not take into account the 
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polarization effects. To introduce our computing method, we first mention some 
results concerning light scattering. 

The time average of the power flux of the scattered light with a frequency between 
w,  and of + dwf crossing the surface dS at distance r from the scattering centre is 
given by (Hayes and Loudon 1978, Jackson 1962. Chu 1974, Lax and Nelson 1971): 

dT, = ---- (g(r ,  t )g(r ,  t + r ) )  elDrr sin2 Q d r  dS dw, 

w,here w,  is the frequency of the scattered light. @ the angle betwmeen the polarization 
of incident light and the direction of propagation of the scattered field, Ei the 
amplitude of the incident electric field and A(r. t )  the amplitude of the vector potential 
of the scattered electromagnetic field. Vis the scattering volume, 

The vector potential A(r ,  I )  is given by 

6 ( f  - ~ t '  - lr- r' l /c)  dP(r',t ') 
A(r, t) = - dr' dt' 

4iT Ir-r# at '  

where P(.r. f) is the macroscopic dielectric polarization. This quantity is the average 
over a volume A V  of the microscopic polarization P, of the medium 

1 
P(,r. I )  = - AV(r )  Pm(r"f)dr" 

The microscopic polarization is given by 

p, (r3  t )  = E q,u,(r)a(r - 

where ut is the displacement of the charge 9; relative to the equilibrium position roi. 
As already mentioned, in fractal materials this definition cannot be applied 

because the value of the polarization depends on the value of the volume AV. To 
avoid this difficulty, we chose A V  for the volume of the homogeneous particles. 

If Ei(r, t )  is the incident field with frequency a, and wavevector k , ,  the induced 
polarization is given by 

P(r,  t)  = Eo,y(r, !)E, exp[i(k, . r - mi[)] (32) 

where x(r. t )  is the dielectric susceptibility. In this simple model we assume that the 
vector P is in the same direction as the vector E .  In the homogeneous medium, the 
intensity of the scattered light is obtained by expanding fluctuations of the sus- 
ceptibility in plane waves (phonon series) with frequency mi(qph) and wavevector 
qph. In a very porous material, where the density is not homogeneous on the scale 
of D fraction of a wavelength, the problem of determining ,y(r.t) is much more 
complicated (Alexander 1989). Fluctuations of the susceptibility 6,y(r, I )  can be 
expressed as an expansion in terms of the normal coordinates Q,. The normal 
coordinates being a linear combination of the particle displacements u,(n), the sus- 
ceptibility can be expanded directly in terms of u,,(n). One obtains 
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Since the average is calculated over the volume A V  of the particles. the pol- 
arizability and susceptibility must be written only as a function of the mean particle 
positions f ( r ,  I )  = f ( re ,  I )  and x , , ( r )  = xn. The fluctuations of the polarizability are 
now written as 

Sf ( r , , ,  t) = q16x(r,,, t)Ei exp[i(k, ' r ,  - wit)]. (34) 
Then one obtains for the vector potential 

(35) 
6(r - I' - / r  - r,,. l/c) d[SP(r,,,  , r')] 

di'. dt ' A(r, f) = 2 A V C  1 
n' lr - r,,, I 

Taking into account the relations (28), (29). (33). (34) and (35) and after some 
algebra, one obtains for the spectral differential scattering cross section (with @ = 
4) 

with 

w > 0 ( w  < 0) correspond to photon energy loss (gain). The Stokes components are 
associated with w > 0 while the anti-Stokes components are associated with w < 0 
(Hayes and Loudon 1978). qd is the momentum transfer. A V  has been included in 
the definition of susceptibility derivatives. 

Determination of (36) and (37) requires the calculation of eigenfrequencies and 
eigenvectors of the dynamical matrix, which is not easy for large systems without 
perfect periodicity. Usual diagonalization fails for systems greater than about some 
thousand atoms. Since it is necessary to calculate the spectrum for very large systems, 
we used the spectral moments method. By this method we extract, directly from the 
dynamical matrix, only the active modes in the processes studied, with the correct 
intensity. A new function is introduced, which is equal to (36) for w > 0. but is 
symmetrical 

with 
KO = (l/8nzc4))oio:[n(w) + l]h. 

Knowledge of (38) allows determination of the scattered intensity. Now for the 
calculation of gR(u) we introduce the vectors lo) such that 

in the site representation Ian). Then the moments of gR(u) are directly obtained 
from the dynamical matrix D: 
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Figure 14. Log-log plot of the Raman :"tensity of the vectorial disordered (n = 12 level) 
Sierpinski gasket. with ( 0 )  random local Raman tensor and ( b )  local Raman tensorsgiven 
as ,y.. = (-1)'. 

p: = I gR(u)u"du=(uIDnIu) .  (40) 

From the moments, the scattering cross section itself is calculated (Benoit 1987, 
Benoit and Poussigue 1989). From the invariance of the system as a whole, the 
coefficients x.. are such that 

ExX,. = o  for all LY. (41) " 
The exact structure of the system, density of states,, localization (or super- 

localization) are taken into account without any special conjectures. 
We have computed the Raman spectra for the disordered vectorial Sierpinski 

gasket (level n = 12) and, in order to compare our results concerning the scattering 
of light with previous experiments, we assumed that the distances between the atoms 
were equal to 30 A. The size of the gasket was 1.23 pm. Two types of local Raman 
tensors and several scattering vectors were considered. Computation was performed 
with four scattering angles 0, = 30", go", 150" and 180". The results showed that the 
Raman spectra did not change much when the scattering angle was changed from 
30" to BO", which is in agreement with the experimental results. 

We also computed the Raman intensity for several types of susceptibility deriva- 
tives (local Raman tensors) x.,,. In the first model, the local Raman tensors are given 
by xmn = y,, where the yn are random variables distributed between -0.5 and 0.5 
with a uniform probability density. Results are shown in figure 13(a). The spectrum 
over the cross-over frequency was a straight line with a slope of -0.78. In the second 
model the local Raman tensors were given as xm,, = (-1)". The Raman scattering 
spectrum is reported in figure 14(b). The slope of the curve over the cross-over 
frequency was then -3.32. 

5 .  Discussion and conclusions 

Let us consider the results obtained for localization of the modes (figures 10 to 13). 
As already mentioned, we observed that the modes are much more localized in the 
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high-frequency regions for all models. We also note that, whatever the model, 
localized and non-localized modes appear in all the spectra. We should point out 
that a method used here takes into account the contribution of all modes with a 
given frequency (relation (24)) and concerning the atom n, of the 'centre' of the 
gasket. Instead, we obtained the localization of a wavepacket around a given fre- 
quency and so the method gave an order of magnitude for average values of the 
localization of modes with a frequency between w and w + dw (or U and U + du). 
From the particular position of the atom n,, part of the modes may have a zero 
component. For instance, from the symmetry, in the scalar model, the A, modes 
will have a zero component. However, for the disordered systems all modes may 
have a non-zero component on this atom. To obtain more information on the local- 
ization, we used the correlation function (7) to compute the localization ratio with 
the same atoms as used for the determination of P(u) (relation (27)). For large E 
the value of the localization ratio was found close to 200. Now if the eigenmodes are 
not centred on the atom n, the localization ratio can be larger than 200. So if P(u) 
is smaller than about 200 the modes are certainly localized. and on the contrary the 
modes are extended and not centred on n,. 

For the perfect scalar model (figure 10) we find a strong localization for the U = 
3 and U = 6 modes, which is in general agreement with the value obtained by 
Rammal (1984). We note that the localization decreases with the frequency. 

For the disordered scalar model (figure l l ) ,  with the maximum frequency of the 
DOS being 5.32, we noted that the high-frequency modes are strongly localized, the 
localization ratio is practically zero up to U = 3.55, and that generally the modes are 
much more localized than for the perfect model. However, if some modes are strongly 
localized, we note the presence in all the spectrum of some extended modes. The 
conclusion is that the disorder in the scalar model for the Sierpinski gasket did not 
strongly disturb the low-frequency modes but is much more sensitive in the high- 
frequency region. This result is in agreement with the permanence of the discrete 
nature of the low-frequency spectrum, even with a strong disorder and also with the 
very nice fracton dispersion found with this model (figure 4). 

For the perfect vectorial gasket we note that, in contrast to the perfect scalar 
model, in the high-frequency region (figure 12), the localization increases as the 
frequency decreases. The localization of the modes near the maximum frequency at 
U = 4.79 is not specially strong. 

For the disordered vectorial Sierpinski gasket, with the maximum frequency of 
the spectrum being U = 3.7 (figure 13), we find a very strong localization in the high- 
frequency part (up to 3.16) and a strong localization of all modes over all the 
spectrum. The most interesting point concerned the presence of two different regions 
(figure 13(b)), which correspond exactly to both regimes found in the DOS (figure 
9(b)). While in the low-frequency regime the localization ratio is a constant on much 
of the spectrum, the high-frequency regime is a succession of more or less localized 
modes. The strong localization of the low-frequency regime confirms that g(w) - w 
law did not correspond to  a genuine acoustic regime and this result explains why we 
did not obtain any dispersion of fractons with the veclorial disordered model: the 
modes are so localized that they are not affected by the change of the boundary 
conditions. It is not clear why one obtains a pseudo-Debye law in this system. The 
w + 0 asymptotic behaviour of the DOS has been intensively studied in random one- 
dimensional systems (Dyson 1953, Alexander et al 1981 and references therein). 
These latter authors have shown that the exact behaviour depends on the class of 
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the probability density for the force constants. Very few studies have been carried 
out for higher-dimensional systems. The presence of a possible additional cross-over 
has been mentioned by Feng (1985). the elasticity being dominated by stretching at 
small scales and by bending at larger. However, the cross-over found here arises 
from the disorder and it is rather hard to define stretching or bending modes in our 
model. However, we note that the behaviour of the DOS did not depend on the form 
of the probability density, that the part of the spectrum concerned is small (U, = 
0.1, which gave ucJumax = 1/400). that the system was strongly disordered and that 
the modes were largely localized. If we consider an ensemble of systems with the 
same structure, for a given mode j ,  the squared frequency U, is a function of the 
force constants k, that concern this mode: 

[i, =f,(kl .k?,  ks . .  . . . k,. . . . ,k t t )  j = l , 2 , 3  , . . . ,  N (42) 
where the form of the functions f ,  only depends on the structure. 

Now the probability of finding ul between U and U + du is equal to the probability 
of finding k, between k, and k ,  + dk, multiplied by the probability of finding k, 
between k2 and k2 + dk, and so on, followed by a summation over all possible values 
of k , ,  k2,  k,, . . . , k , .  . , . , k,, that satisfy the relation (42) with U, E (U. U + du). The 
density of states can be written 

where the summation over j takes into account the possible contribution of the 
density of states for all modes at the squared frequency U. From statistical mechanics, 
it is well known that the average density of states will be equivalent to the DOS of 
an infinite isolated system. Now we can  imagine that for strongly connected systems, 
in low-frequency regions, as U increases, the contribution of some modes (which 
should have a low frequency with all force constants equal to 1 for instance) decreases 
while the contribution of some other modes (which should have a higher frequency) 
increases. Such an effect may produce a constant density of states G(u) and a linear 
form for g(w)  for a narrow zone of the spectrum. The same type of interpretation 
can be made for the localization ratio. The form of the component e,&) of a mode 
j as a function of the force constants only depends on the structure or connectivity. 
The localization of this mode (,value of the e,(j))  will depend on the effective values 
of the elastic constants. it follows that, for a given frequency, many different modes 
with various localization lengths, even for a mode with a given type, will contribute 
to the correlation function (24), given a constant value of the localization ratio over 
a large region of the lowfrequency part of the spectrum. Clearly such an inter- 
pretation needs to be confirmed. Let us note that an additional cross-over in the 
density of states of the fracton regime has been found recently in silica aerogels 
(Vacher el al 1990), which is interpreted as the presence of two distinct elastic 
regimes. We see that an altemative interpretation is that this cross-over could arise 
from disorder. We will now consider the fracton dimensionality obtained from the 
fracton dispersion and from the slope of the DOS in the fracton regime (table 2 ) .  For 
the perfect scalar model, the value obtained was close to the values obtained by 
Alexander and Orbach (1982), Rammal and Toulouse (1983) and Rammal (1984). 
The values obtained for the disordered model by both me-thods were in agreement. 
These values were slightly higher than those obtained  with^ the perfect model. This 
result confirms the relatively weak effect of disorder on the dynamics of this system. 
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For the vectorial models, we had no relations between the values obtained from the 
fracton dispersion in the perfect lattice and from the DOS in the disordered one. In 
the strongly disordered Sierpinski gasket, the localization length E(w) is no greater 
than the length L (relation ( 5 ) )  and this certainly affects the fractal dimensionality. 
But it is not clear why these values were so different and why the values obtained 
with the disordered vectorial model were so close to the values obtained with the 
scalar systems. Let us now consider the DOS of the perfect gaskets. It is clear that 
we did not obtain a simple power form (2) as predicted by Alexander and Orbach 
(1982), Rammal and Toulouse (1983) and Rammal (1984). For infinite gaskets, the 
DOS will always behave, for w+ 0, as in figures 3 or 6. From the structure of the 
gasket and in contrast with a compact system or percolation networks, we noted that 
the number of degrees of freedom could not be continually varied. However, we will 
see that it is possible practically to define fracton dimensionality. We started from a 
very large system, fractal or not, and we divided it into disconnected equal-sized 
blobs large enough to neglect the boundary conditions for compact materials or 
corresponding to weakly connected blobs for fractals. For each blob there was a 
lower non-zero vibration frequency w ( L )  that was associated with the size L of the 
blob. The relation (3) showed that the integrated density of states follows a power 
law for these discrete frequency values in a large system. For the Sierpinski gasket, 
this means that, if we plot the value of the integrated density of states, the points 
with frequencies w(L(n)) .  where n is the stage, will be on a straight line with the 
fracton dimensionality as the slope (in log-log plot). Between these frequencies, the 
integrated density of states (IDOS) will be a (devil's?) staircase. For compact materials 
and for percolation networks, from the statistical average, the set of points w(L) will 
be dense and we shall obtain a smooth curve for the IDOS: 

G(o) - ad. (44) 
The spectral moments method mainly performs well for computing the linear 

response of the system, which is a leading interest for physicists. Let us note that 
the relations (36) and (37) can be written 

1 
X--[S(OJ- 

2w, 
(45) 

with r,. = r. + rN (n' = n + N ) .  
The term in the large parentheses represents the Fourier transform of a correlation 

function between the quantities (xefl/umn)ec,,(j) and (xp.. . + , ~ / ~ m , , + , y ) e p . . + , ~ ( j )  . In 
crystals, these correlation functions can be easily obtained. In very porous materials 
the problem is much more difficult. To interpret the light scattering of fractals, 
Alexander (1989) conjectured that (xm/dm,Jem(j) is proportional to the density, 
which is certainly correct, and found a power law for the Raman intensity. Here we 
calculated the Raman spectra of the disordered vectorial gasket. It is difficult to 
make any detailed comparison with the experimental results. However, we can 
imagine a system of layered Sierpinski gaskets without interaction, with an incident 
beam of light polarized perpendicular to the plane of the gasket. Scattered light is 
collected in the plane of the gasket with the same polarization. Both models devel- 
oped for the local Raman tensor corresponded to a gasket where the homogeneous 



3176 C Benoit et a1 

particles were not symmetrical with the plane of the gasket. The first (disordered) 
model corresponded to a disorder in the orientation of these particles, while in the 
second model the particles were oriented up and down. giving increases or decreases 
of the polarizability with their displacements respectively. Raman scattering being a 
collective effect, the method used here was certainly not quite correct. However, it 
is the best way to take into account the structure (and the density) of the system and 
the correct correlation functions. 

We observed that we have obtained, with both models in the fracton regime, a 
power law with the value of the slope being highly dependent on the value of the 
susceptibility derivatives of the material (figure 14). We also note that, in the 
fracton regime. Raman intensity after correction of the Boltzmann factor is not 
simply g ( w ) / w .  The Raman process directly selects the qd component of the Fourier 
transform of &c,,/V'm,,)emn(j) (relation (37)). It is natural that the Raman intensity 
depends on the value of xwn and qd. However, only scaling arguments can explain 
the power law obtained with both models. 

In conclusion. the results obtained on the Sierpinski gasket, which is a quite 
difficult model to compute, showed that the spectral moments method is a very high- 
performance tool for calculating the complete DOS of a system. Difficulties only 
appeared for very low frequencies where the method could not resolve the various 
peaks of the spectrum. However, in contrast with other techniques, we do not 
compute the DOS point by point. The complete spectrum was directly obtained, with 
very reasonable computing times, from the generalized moments. We now have the 
tools to study a model of silica aerogels as close as possible to physical reality. 
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